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Abstract—Understanding the biological relevance of specific
genes in disease progression is crucial for advancing diagnostics
and treatment. Microarray technologies have created a bridge
between computer science and biology. Due to the high di-
mensionality of these datasets, feature selection with various
computational tools and algorithms has been the subject of study
for several decades. In this study, we developed a robust two-
step feature selection method to identify the most biologically
relevant features associated with various diseases. Initially, we
employed the Extreme Gradient Boosting(XGB) Classifier’s in-
built ranking mechanism to select the top 10% of features from
each dataset. This step was followed by Recursive Feature Elim-
ination with 10-fold cross-validation using a Logistic Regression
wrapper (LR-RFECV) to refine the selection to the most optimal
feature set.

Our methodology was evaluated across an extensive range
of binary and multiclass datasets, making this study one of
the most comprehensive in the field. The comparative analysis
of the proposed method against several state-of-the-art (SOTA)
methods across various datasets demonstrates its robustness and
superior performance. We focused on establishing the biological
significance of the identified features. Utilizing explainable AI
techniques, specifically SHAP, we interpreted the models and
conducted enrichment analyses using different tools. These anal-
yses highlight the utility of our pipeline in not only improving
classification accuracy but also in providing meaningful biological
insights.

Index Terms—Microarray, Cancer, Enrichment Analysis,
SHAP, Feature Selection

I. INTRODUCTION

Cancer research heavily relies on biomarkers like genes
and proteins for diagnosis and prognosis, with microarray
technology generating vast gene expression datasets [1].
However, the high dimensionality of these datasets poses
challenges, addressed through gene selection methods that
improve classification accuracy by reducing dimensionality
[2]. AI and machine learning techniques, particularly feature
selection methods such as filter, wrapper, embedded, ensem-
ble, and hybrid approaches, are crucial in this process [3].
Recent advancements include graph-based methods [4] and
explainable AI techniques like SHAP, which enhance model
interpretability [5]. In our study, we used a two-step feature
selection method combining XGBClassifier and LR-RFECV to
identify biologically relevant features, supported by SHAP for
interpretability and enrichment analysis for biological insight.

II. METHODS

We worked with 11 binary class datasets and 10 multi-class
datasets from different data repositories.

Our proposed pipeline has four major steps, namely:
1) Pre-processing: Missing value imputation with mean;

erroneous value detection and correction; standardiza-
tion.

2) Feature Selection with XGBoost Classifier: Selecting
the top 10% of features by fitting the data into an Ex-
treme Gradient Boosting classifier based on the model’s
feature importance rank.

3) 10-fold RFECV with Logistic Regression: RFECV
is done with 10-fold cross-validation with a Logistic
Regression classifier as the wrapper; LR is chosen for
its simplicity and suitability with microarray datasets.

4) Evaluation of the Obtained Gene Set: Three types of
evaluation are done-

• Machine Learning Algorithms, namely Logistic Re-
gression, Support Vector Machines, Random Forest,
Voting (LR, SVM, RF), and Stacking (LR, SVM,
RF; meta classifier - LR).

• Use of Explainable AI (SHAP) to explain the impor-
tance of the features in ML models and understand
the relevant biological significance with the associ-
ated disease.

• Enrichment Analysis of some datasets to understand
the biological relevance of the selected features with
the associated disease using tools such as DAVID,
Metascape, EnrichR, Toppgene, and g:Profiler.

III. MAIN RESULTS

A. Results of Machine Learning Algorithm

1) Self Evaluation: We have added the violin plots of F1
score of all the datasets in Figure 1 in two subplots, Figure
1a showing the results of binary datasets and Figure 1b of
multi-class datasets.

From Figure 1, we can see that the datasets Adenocar-
cinoma, Lymphoma(both binary and multi-class), Ovarian
Cancer, Crohn disease, MLL, and SRBCT achieve a perfect
score. A few datasets, such as Breast Cancer and Colon Tumor
among the binary datasets, and Glioma and Leukemia4 among
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(a) Binary Datasets
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(b) Multi-class Datasets

Fig. 1: F1 Score of All Datasets Obtained from the Stacking Classifier

the multi-class datasets, do not achieve a stable score but still
has an average score more than 85%. The rest of the datasets
have a score of more than 90%.

2) Comparison with Previous Methods: We have conducted
a comparison of performance with recent literature and con-
fidently assert that our proposed method achieves state-of-
the-art results. Furthermore, where additional opportunities for
improvement exist, our method surpasses existing benchmarks.

For instance, in the Adenocarcinoma dataset, the proposed
method using SVM and Stacking achieved a perfect accuracy
of 1.00 with 17.85 features, outperforming methods like ILRC
+ SVM [10] (0.95 accuracy). In the Breast Cancer dataset, the
proposed method (SVM) achieved an accuracy of 0.93 with
82.85 features, whereas the WCLFJHEF (SVC) [9] method
achieved a higher accuracy of 0.99 with 25 features. Similarly,
for the Leukemia dataset, the proposed method achieved an

accuracy of 0.98 with 56.65 features, while the AltWOA
method [11] achieved a perfect accuracy of 1.00 with 30
features.

B. SHAP-Based Interpretability of Model Predictions

We conducted SHAP analysis of three binary datasets (Ade-
nocarcinoma, Leukemia, and Ovarian Cancer) and three mul-
ticlass datasets (Endometrial Cancer, Leukemia3, and MLL).
For all the datasets, we performed an 80-20 stratified split,
training the model on 80% of the data and conducting the
analysis on the remaining 20%.

We used the KernelExplainer for the binary datasets, given
that we employed a Logistic Regression model. KernelEx-
plainer is versatile and works with any type of model. For
the multiclass datasets, we used the TreeExplainer to take ad-
vantage of its specialized features for multi-class datasets. We



have used an XGBoost model for the multiclass datasets. Some
key findings related to the Leukemia dataset are discussed
below:

Leukemia: The summary plot of the Logistic Regression
model for the Leukemia dataset is given in Figure 2.
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Fig. 2: SHAP summary plot for Leukemia dataset

The first prominent gene is X80230 at which has the
gene symbol CDK9 (Cyclin Dependant Kinase 9). A study
published in Blood [6] discusses the formation of novel CDK9
in AML and their role in leukemogenesis.

The other two prominent genes are M92287 at which is
CCND3, the Cyclin D3 gene and M23197 at which is CD33
gene. Their correlation to Acute Leukemias has been topic of
study in several papers such as [7] and [8].

C. Biological Relevance through Enrichment Analysis

Specifically, we selected two binary datasets (Adenocar-
cinoma and Prostate) with positive and negative classes to
showcase our analysis. Notably, we refrained from conducting
enrichment analysis on multiclass datasets due to the lack of
coherent insights it provides. For binary datasets encompassing
various cancer subtypes, we performed enrichment analysis.
However, the pathways identified primarily underscored the
relevance to the broader cancer category rather than individual
subtypes.

We discuss some key findings from the Prostate dataset.
Prostate Cancer: The bar plot in Figure 3 illustrates the

selected enrichment clusters for the prostate cancer dataset.
The genes that appeared most frequently in the disease-

related enrichment terms are HPN, SPINK1, TGM2, TP63,
AGR2, AMACR, and NPY. The relevance of these genes to
prostate cancer has been discussed in many studies including
and not limited to [12] [13] [14].

IV. CONCLUSION

This study introduces a two-step feature selection process
that improves model performance and generalizability by iden-
tifying significant biomarkers from gene expression datasets,
with SHAP values providing crucial feature importance in-
sights. Additionally, the pipeline can be integrated into a
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Fig. 3: Enrichment Clusters of Prostate Cancer Dataset

web-based platform, democratizing advanced bioinformatics
analysis and fostering interdisciplinary collaboration.
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